If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+17x+52=0.
a = 1; b = 17; c = +52;
Δ = b2-4ac
Δ = 172-4·1·52
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-9}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+9}{2*1}=\frac{-8}{2} =-4 $
| 150+2×=195-1x | | 320(1/4)^x/4=5 | | 10−3/4z=8 | | 10=4x+3x2 | | -7–6=k. | | 3/4g-5=0.5 | | 5^(9-3x)=125 | | −3x+8=−1−3x | | 4y^2=88 | | 150=2x=195-1 | | 7=77+t | | 3x+12+85=8x+13 | | m+7-19=-13 | | 5.2g+8=2.2g+16 | | −21=5x+17+x | | 4-7x=x-44 | | 5u-37=-2(5-7u) | | -6x-3x=-8(6x+2) | | 5u-37=-2(5-7) | | –7+9g=10g | | 104°=(9x-25) | | 7n-20=4-5n | | 6x+4=8x-14 | | 1.5w+3=3+2w | | 8x+7+23=78 | | 8x-40=-3(4-5x) | | 22=14.99x-74.95 | | 7x*x=21x | | 5+2f=7f= | | x=14.99(22)-74.95 | | 10*4x=-60 | | z=2z-23 |